
Selection table time relays and multifunction time relays EO
Digital settable multifunction time relay MFZ12DDX El
Analogue settable multifunction time relay MFZ12DX E2
Analogue settable time relays RVZ/AVZ/TGI/EAW12DX E3
Analogue settable multifunction time relay MFZ12NP E4
Analogue settable multifunction time relay MFZ12-230V E5
Analogue settable 2-stage ON-delay A2Z12 E6
Analogue settable multifunction time relay MFZ61DX E7
Description of functions time relays E8
NEW Digital settable timer with 2 channels S2UI2DDX E9
Technical data E10

Selection Table Time Relays and Multifunction Time Relays

The successful

Multifunction time relays with up to 18 functions combined with universal control voltage 8 to 230 V UC－a competitive advantage，particularly the digital settable time relays MFZ12DDX．Multifunction time relays always switch at zero passage， the DX devices only when connected to N ．

Page		E1	E2	E3	E3	E3	E3	B3	E4	E5	$E 6$	57
		$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\mathrm{~V}} \\ & \stackrel{1}{N} \\ & \stackrel{N}{\Sigma} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{N}{\Sigma} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { 㐫 } \\ & \text { N } \\ & \text { N } \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 文 } \\ & \text { N} \\ & \stackrel{y}{c} \end{aligned}$		$\begin{aligned} & 0 \\ & \substack{1 \\ \text { 人̀ } \\ \underset{\sim}{N} \\ \sum_{\mathbf{U}}^{2}} \end{aligned}$		$\begin{aligned} & 0 \\ & + \\ & + \\ & 0 \\ & \sim \\ & N \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$ N N N	$\begin{aligned} & \text { O} \\ & \text { N } \\ & \underset{\sim}{4} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{1} \\ & \stackrel{1}{0} \\ & \stackrel{0}{9} \\ & \stackrel{y}{2} \end{aligned}$
Modular device for mounting on DIN rail EN 60715 TH35，number of modules 18 mm each		1	1	1	1	1	1	1	1	1	1	
Built－in device for installation （e．g．flush－mounting box）												\square
Digital settable		－										
Analogue settable			－	■	■	－	－	\square	\square	\square	■	\square
Number of NO contacts （not potential free）								（1）	（1）	1	1＋1	1
Number of CO contacts potential free		1	1	1	1	1	1					
Zero passage switching	∞	－${ }^{3)}$	－${ }^{3)}$	－${ }^{3)}$	－${ }^{3)}$	－${ }^{3)}$	－${ }^{3)}$	■	■			－${ }^{3)}$
Switching capacity 16A／250V AC									－			
Switching capacity $10 \mathrm{~A} / 250 \mathrm{~V}$ AC		■	■	■	－	－	－			－	■	－
Incandescent lamp load W	党	2000	2000	2000	2000	2000	2000	$400^{1)}$	2300	1000	1000	2000
Bistable relay as relay contact	『	$\square{ }^{2)}$	－${ }^{2)}$	■ ${ }^{2)}$	－${ }^{2)}$	$\square{ }^{2)}$	－${ }^{2)}$			－${ }^{2)}$	$\square{ }^{2)}$	－${ }^{2)}$
Universal control voltage	UG：8．2ane	■	■	\square	■	■	\square	\square	\square		\square	\square
Low standby loss	min（1）	■	■	■	■	■	■	■	■	■	■	■
Multifunction time relay		\square	■						\square	\square		■
Off delay RV		\square	－	■					■	■		■
Operate delay AV		\square	－		■				\square	－		－
Additive operate delay AV＋		－	■									
2－stage ON－delay											■	
Fleeting NO contact EW EW		－	■				■		■	■		■
Fleeting NC contact AW		\square	■				\square		■	－		■
Fleeting NO contact and fleeting NC contact EAW		■	■				■					
Operate and release delay ARV		\square	\square						\square	－		
Additive operate and release delay ARV＋		\square	－									
Relay function ER		\square	\square									
Release－delay impulse switch SRV		\square	－									
Impulse switch functions ES and ESV		\square	\square									
Clock generator starting with impulse TI		\square	■			－		－	■	■		－
Clock generator starting with pause TP		\square	－						\square	－		
Impulse controlled operate delay IA （e．g．automatic door opener）		■	■						■	■		■
Pulse shaper IF		－	－									

${ }^{1)}$ Up to 3400 W with capacity enhancers LUD12－230V．
${ }^{2)}$ The switched consumer may not be connected to the mains before the short automatic synchronisation affer installation has terminated．
${ }^{3}$ ）Duplex technology：When switched with $230 \mathrm{~V} / 50 \mathrm{~Hz}$ zero passsage switching is activated if L is connected to（ L ）and N to (N) ． Then additional standby loss of only 0.1 Watt．

If N is connected, the zero passage switching is active.

$\min (1)$

1 CO contact potential free 10A/250VAC. Incandescent lamps 2000W*. Standby loss 0.05-0.5 watt only.

Modular device for DIN-EN 60715 TH35 rail mounting.
1 module $=18 \mathrm{~mm}$ wide, 58 mm deep.
With the patented Eltako Duplex technology (DX) the normally potential-free contacts can still switch in zero passage when switching 230 V AC 50 Hz and therefore drastically reduce wear. Simply connect the neutral conductor to the terminal (N) and L to 15 (L) for this. This gives an additional standby consumption of only 0.1 Watt.
Universal control voltage 8 to $\mathbf{2 3 0}$ V UC. Supply voltage same as the control voltage.
Both functions and times are entered at the touch of a key and indicated digitally on an LC display. Only two keys are required for this purpose.
When setting the time all values can be entered within preset time ranges (0.1 to 9.9 or 1 to 99 seconds, minutes or hours). The longest possible setting is 99 hours. 600 settings are possible. The time setting is continuously displayed digitally.
By using a bistable relay coil power loss and heating is avoided even in the on mode.
The switched consumer may not be connected to the mains before the short automatic synchronisation after installation has terminated.
Functions (description page E8)

RV	$=$ off delay
$\mathbf{A V}$	$=$ operate delay
$\mathbf{A V +}=$	operate delay additive
$\mathbf{T I}=$	clock generator starting with
	impulse

TP = clock generator starting with pause
IA = impulse controlled pickup delay (e.g. automatic door opener)

IF = pulse shaper
EW = fleeting NO contact
AW $=$ fleeting NC contact

EAW = fleeting NO contact and fleeting NC contact
ARV = operate and release delay
ARV+ = operate and release delay additive
ES = impulse switch
SRV = release-delay impulse switch
ESV = impulse switch with release delay and switch-off early-warning function
$\mathbf{E R}=$ relay
$\mathrm{ON}=$ permanent ON
OFF = permanent OFF

With TI, TP, IA, EAW, ARV and ARV+ functions, a different second time can be entered also with different time ranges.
Setting the times and functions: The LCD component to be changed is selected by pressing the MODE key. The component accessed flashes. Press the SET key to change the component accessed. This may be the function, the time ranges, time T 1 or time T2 (on TI, TP, IA, EAW, ARV and ARV+ only). Pressing the MODE key terminates each input. Once the time has been set with MODE, no more components are flashing. The timing relay is now ready to operate. Press the MODE key again to restart the input cycle. All the entered parameters are retained if they are not changed using SET. 25 sec . after the last operation and if the component still flashes the input cycle is automatically terminated and the previously made changes lapse.
Functions of the LC display: If the ON or OFF function was selected, no time is displayed, only ON and OFF and a contact symbol in the correct position. On all other functions, the set time, the function code and the contact symbol are shown in the correct position (open or closed). The clock symbol flashes while the set time is elapsing and the remaining time is shown.
Safety in the event of a power failure: The set parameters are stored in an EEPROM and are therefore immediately available again when the power supply is restored after a power failure.

* The maximum load can be used starting at a delay time or clock cycle of 5 minutes. The maximum load will be reduced for shorter times as follows: up to 2 seconds 15%, up to 2 minutes 30%, up to 5 minutes 60%.

Technical data page E10. Housing for operating instructions GBA12 page Z 5 .

Analogue settable universal control voltage
 Multifunction Time Relay MFZ12DX with 18 functions

Function rotary switches

Typical connection
Level of setting 1, Functions F

Typical connection

Level of setting 2, Functions (F)

If N is connected, the zero passage switching is active.

1 CO contact potential free 10 A/250V AC. Incandescent lamps 2000 W*. Standby loss 0.02-0.6 watt only.

Modular device for DIN-EN 60715 TH35 rail mounting.
1 module $=18 \mathrm{~mm}$ wide, 58 mm deep.
With the patented Eltako Duplex technology (DX) the normally potential-free contacts can still switch in zero passage when switching 230 V AC 50 Hz and therefore drastically reduce wear. Simply connect the neutral conductor to the terminal (N) and Lto 15 (L) for this. This gives an additional standby consumption of only 0.1 Watt.
Universal control voltage from 8 to 230 V UC. Supply voltage same as control voltage.
Time setting between 0.1 second and 40 hours.
By using a bistable relay coil power loss and heating is avoided even in the on mode.
The switched consumer may not be connected to the mains before the short automatic synchronisation after installation has terminated.
According to the connection of the power supply to the terminals B1-A2 or B2-A2 two different levels of settings can be selected:
Functions \mathbf{F} with connection of the power supply to B1-A2 (description page E8)
(Standby loss 0.02-0.4 W)
RV = off delay
AV = operate delay
TI = clock generator starting with impulse
TP = clock generator starting with pause
IA = impulse controlled operate delay (e.g. automatic door opener)
EW = fleeting NO contact
AW $=$ fleeting NC contact
ARV = operate and release delay
ON = permanent ON
OFF = permanent OFF
Functions (F) with connection of the power supply to B2-A2 (description page E8)
(Standby loss 0.02-0.6 W)
SRV = release-delay impulse switch
ER = relay
EAW = fleeting NO contact and fleeting NC contact
ES = impulse switch
IF = pulse shaper
ARV+ = additive operate and release delay
ESV = impulse switch with release delay and switch-off early-warning function
AV+ = additive operate delay
$\mathrm{ON}=$ permanent ON
OFF = permanent OFF
The LED below the big rotary switch indicates the contact position while time-out is in progress. It blinks while the relay contact $15-18$ is open (15-16 closed), and is continuously ON as long as the relay contact $15-18$ is closed ($15-16$ open).
The time base \mathbf{T} is selected by means of the middle, latching rotary switch \mathbf{T}. Time-base figures available are 0.1 seconds, 0.5 seconds, 2 seconds, 5 seconds, 1 minute, 2 minutes, 5 minutes, 1 hour, 2 hours and 4 hours. The total time is obtained by multiplying the timebase by the multiplier.
The multiplier $\mathbf{x T}$ is set on the upper, latching rotary switch $\mathbf{~} \mathbf{T}$ and is in the range from 1 to 10. Thus, time settings can be selected in the range from 0.1 second (time base 0.1 second and multiplier 1) and 40 hours (time base 4 hours and multiplier 10).

* The maximum load can be used starting at a delay time or clock cycle of 5 minutes. The maximum load will be reduced for shorter times as follows: up to 2 seconds 15%, up to 2 minutes 30%, up to 5 minutes 60%.

Technical data page E10. Housing for operating instructions GBA12 page Z5.
RVZ/AVZ/TGI/EAW/12DX-UC min Cor

Typical connection

If N is connected, the zero passage switching is active.

1 CO contact potential free 10A/250V AC. Incandescent lamps 2000 W*. Standby loss 0.02-0.4 watt only.

Modular device for DIN EN 60715 TH35 rail mounting.
1 module $=18 \mathrm{~mm}$ wide, 58 mm deep.
These digital settable time relays are identical to the MFZ12DX-UC, except that they have one function only (description page E8).

On type TGI12DX-UC T1 and T2 can be set separately by a second multiplier while the

 time base remains the same.On type EAW12DX-UC different functions can be selected by a rotary switch: fleeting NO contact (EW), fleeting NC contact (AW) or fleeting NO contact and fleeting NC contact (EAW). With the patented Eltako Duplex technology (DX) the normally potential-free contacts can still switch in zero passage when switching 230 V AC 50 Hz and therefore drastically reduce wear. Simply connect the neutral conductor to the terminal (N) and L to 15 (L) for this. This gives an additional standby consumption of only 0.1 Watt.
Universal control voltage from 8 to 230 V UC. Supply voltage like control voltage.
Time setting between 0.1 second and 40 hours.
By using a bistable relay coil power loss and heating is avoided even in the on mode.
The switched consumer may not be connected to the mains before the short automatic synchronisation after installation has terminated.
The LED below the big rotary switch indicates the contact position while time-out is in progress. It blinks while the relay contact 15-18 is open (15-16 closed), and is continuously ON as long as the relay contact $15-18$ is closed ($15-16$ open).
The time base \mathbf{T} is selected by means of the middle, latching rotary switch \mathbf{T}. Time-base figures available are 0.1 seconds, 0.5 seconds, 2 seconds, 5 seconds, 1 minute, 2 minutes, 5 minutes, 1 hour, 2 hours and 4 hours. The total time is obtained by multiplying the time base by the multiplier.
The multiplier $\mathbf{X T}$ is set on the upper, latching rotary switch $\mathbf{X T}$ and is in the range from 1 to 10. Thus, time settings can be selected in the range from 0.1 second (time base 0.1 second and multiplier 1) and 40 hours (time base 4 hours and multiplier 10).

* The maximum load can be used starting at a delay time or clock cycle of 5 minutes. The maximum load will be reduced for shorter times as follows: up to 2 seconds 15%, up to 2 minutes 30%, up to 5 minutes 60%.

Function rotary switches

RVZ/AVZI2DX-UC

Function rotary switches

TGII2DX-UC

Function rotary switches

EAW12DX-UC

Technical data page E10. Housing for operating instructions GBA12 page Z5.

RVZ12DX-UC	RV release delay (OFF delay)	EAN 4010312603093	
AVZ12DX-UC	AV operate delay (ON delay)	EAN 4010312603109	
TGI12DX-UC	Tl clock generator starting with impulse (flasher relay)	EAN 4010312603116	
EAW12DX-UC	EW+AW+EAW fleeting NO contact and fleeting NC contact	EAN 4010312603123	

Analogue settable Multifunction Time Relay MFZ12NP

 with 10 functionsMFZ12NP-230 V+UC

Technical data page E10. Housing for operating instructions GBA12 page Z 5 .

Standard setting ex factory.

Typical connection

$\min (J)$

1 NO contact potential free $10 \mathrm{~A} / 250 \mathrm{~V}$ AC. Incandescent lamps 1000 W*. Standby loss 0.4 watt only.

Modular device for DIN-EN 60715 TH35 rail mounting.
1 module $=18 \mathrm{~mm}$ wide, 58 mm deep.
Control voltage $\mathbf{2 3 0}$ V. Supply voltage same as control voltage.
Time setting between 0.1 second and 40 hours.
Functions F (description page E8)
RV = off delay
AV $=$ operate delay
II = clock generator starting with impulse
TP $=$ clock generator starting with pause
IA = impulse controlled operate delay (e.g. automatic door opener)
EW = fleeting NO contact
AW $=$ fleeting NC contact
ARV = operate and release delay
$\mathrm{ON}=$ permanent ON
OFF = permanent OFF
The LED below the big rotary switch indicates the contact position while time-out is in progress. It blinks while the relay contact is open, and is continuously ON as long as the relay contact is closed.
The time base \mathbf{T} is selected by means of the middle, latching rotary switch \mathbf{T}. Time-base figures available are 0.1 seconds, 0.5 seconds, 2 seconds, 5 seconds, 1 minute, 2 minutes, 5 minutes, 1 hour, 2 hours and 4 hours. The total time is obtained by multiplying the timebase by the multiplier.
The multiplier $\mathbf{X T}$ is set on the upper, latching rotary switch $\mathbf{X T}$ and is in the range from 1 to 10. Thus, time settings can be selected in the range from 0.1 second (time base 0.1 second and multiplier 1) and 40 hours (time base 4 hours and multiplier 10).

* The maximum load can be used starting at a delay time or clock cycle of 5 minutes. The maximum load will be reduced for shorter times as follows: up to 2 seconds 15%, up to 2 minutes 30%, up to 5 minutes 60%.

Technical data page E10. Housing for operating instructions GBA12 page Z5.

Analogue settable 2-stage ON-delay A2Z12

Technical data page E10. Housing for operating instructions GBA12 page Z5.

A2Z12-UC

Standard setting ex factory.

Typical connection

If N is connected, the zero passage switching is active.
$\min (1)$ $0 \bigodot_{10-230 \mathrm{VCO}}^{8.25 \mathrm{VA}}$

1 NO contact potential free $10 \mathrm{~A} / 250 \mathrm{~V}$ AC. Incandescent lamps 2000 W*. Standby loss 0.02-0.4 watt only.

Built-in device for installation. 45 mm long, 55 mm wide, 18 mm deep.
With the patented Eltako Duplex technology (DX) the normally potential-free contacts can still switch in zero passage when switching 230 V AC 50 Hz and therefore drastically reduce wear. Simply connect the neutral conductor to the terminal (N) and L to $1(\mathrm{~L})$ for this. This gives an additional standby consumption of only 0.1 Watt.
State-of-the-art hybrid technology combines advantages of nonwearing electronic control with high capacity of special relays.
By using a bistable relay coil power loss and heating is avoided even in the on mode.
The switched consumer may not be connected to the mains before the short automatic synchronisation after installation has terminated.
Universal control voltage input 8 to 230 V UC. Supply voltage is same as the control voltage. Time settings between 0.5 seconds and 1 hour.
Functions \mathbf{F} (description page E8)
RV = off delay
AV = operating delay
II = clock generator starting with impulse
IA = impulse-controlled operating delay
$\mathbf{E W}=$ fleeting NO contact
AW = fleeting NC contact

* The maximum load can be used from a delay time or clock cycle of 5 minutes. The maximum load is reduced for shorter times as follows: up to 2 seconds 15%, up to 2 minutes 30%, up to 5 minutes 60%.

Technical data page E10. Short-stroke pushbuttons page Zl-Z3.

The contact 15-18 corresponds on MFZ12NP to the contact L-3. The terminals A1-A2 correspond on MFZ12NP to the terminals A1-N or C1-C2. The contact 15-18 corresponds on MFZ61DX and MFZ12-230V to the contact 1-2. The terminals A1-A2 correspond on MFZ12-230V to the terminals A1-N.

$\mathrm{RV}=$ Release delay

(OFF delay)

When the control voltage is applied the relay contact switches to $15-18$. When the control voltage is interrupted the timing period is started; on time-out the relay contact returns to normal position. Resettable during the timing period.

AV = Operate delay

(ON delay)

When the control voltage is applied the timing period is started; on time-out the relay contact changes to $15-18$. After an interruption, the timing period is restarted.

$\mathrm{TI}=$ Clock generator starting with impulse

(flasher relay)

As long as the control voltage is applied the relay contact opens and closes. On MFZ12, MFZ12DX, MFZ12NP and MFZ61DX the changeover time in both directions is identical, and is equal to the preset time. On TGII2DX both times can be set separately (identical time base, but additional multiplier), on MFZ12DDX it is completely settable separately. When the control voltage is applied the relay contact immediately changes to 15-18.
TP = Clock generator starting with pause (flasher relay)

Description of function same as for TI , except that, when the control voltage is applied, the contact initially remains at 15-16 rather than changing to $15-18$.

IA = Impulse-controlled operate delay

The timing period $\dagger 1$ starts with a control impulse from 50 ms ; on time-out the relay contact changes for the timing period t2 (for MFZ12 and MFZ12DX $=1$ second, for MFZ12NP and MFZ61DX $=3$ seconds) to $15-18$ for 1 second (e.g. for automatic door opener). If tl is set to $\mathrm{t} 1 \mathrm{~min}=0.1$ seconds, the IA operates as pulse shaper, when timing period $\dagger 2$ elapses, independent of the duration of the control impulse (min .150 ms).

EW = Fleeting NO contact

When the control voltage is applied the NO contact changes to 15-18 and reverts on wiping time-out. If the control voltage is removed during the wiping time the NO contact immediately reverts to $15-16$ and the residual time is cancelled.

AW = Fleeting NC contact

When the control voltage is interrupted the NO contact changes to $15-18$, and reverts on wiping time-out. If the control voltage is applied during the wiping time the NO contact immediately reverts to $15-16$ and the residual time is cancelled.

ARV = Operate and release delay

When the control voltage is applied the timing period starts; on time-out he relay contact changes to $15-18$. If the control voltage is interrupted then, another timing period is started and, on time-out, the relay contact to normal position. On MFZ12, MFZ12DX, MFZ12NP and MFZ6IDX this release delay is identical to the operating delay, on MFZ12DDX it is completely settable separately. Affer an interruption of the operating delay, the timing period is restarted.

ER = Relais

As long as the control contact is closed the make contact reverts from 15-16 to 15-18.

EAW = Fleeting NO contact and fleeting NC contact

When the control voltage is applied or interrupted the relay contact changes to $15-18$ and reverts after the set wiping time.

ES = Impulse switch

With control impulses from 50 ms the make contact switches to and fro.
IF = Pulse shaper

When the control voltage is applied the relay contact changes to $15-18$ for the set time. Further control impulses are evaluated only after the set time has elapsed.

ARV+=Additive operate and release delay

Same function as ARV, but after an interruption of the operate delay the elapsed time is stored.

ESV = Impulse switch with release delay and switch-off early-warning function

Function same as SRV. Additionally with switch-off early warning: approx. 30 sec . before time-out the lighting starts flickering 3 times at gradually shorter time intervals.

AV+ = Additive operate delay

Function same as AV. However, after an interruption the elapsed time is stored.

SRV = Release-delay impulse switch

With control impulses from 50 ms the make contact switches to and fro. In the contact position 15-18, the device switches automatically to the rest position 15-16 on delay time-out.

A2 $=2$-stage 0 N -delay

When the control voltage is applied, the time lapse Tl starts between 0 and 60 seconds. At the end of the time lapse, contact $1-2$ closes and time lapse T2 starts between 0 and 60 seconds. At the end of this time lapse, contact 3-4 closes. After an interval, the time lapse starts again at Tl .

ELECTRONICS

with contact switching at zero crossover

2-channel timer. 1+1 NO contacts potential free 16A/250V AC. With "astro" function. Only 0.03-0.4 watt standby loss.

Modular device for DIN-EN 60715 TH35 rail mounting.
1 module $=18 \mathrm{~mm}$ wide, 58 mm deep.
Patented Eltako Duplex technology (DX) allows you to switch normally potential free contacts in zero passage switching when 230 V A/C voltage 50 Hz is switched. This drastically reduces wear. To achieve this, simply connect the N conductor to the terminal (N) and L to 1 (L) and/or 3(L). This results in an additional standby consumption of only 0.1 watt.
State-of-the-art hybrid technology combines advantages of nonwearing electronic control with high capacity of special relays.
By using bistable relays coil power loss and heating is avoided even in the on mode.
Up to 60 timer memory locations are freely assigned to the channels. With date and automatic summer/winter time changeover. Ca. 7 days power reserve without battery.
Each memory location can be assigned with the astro function (automatic switching after sunrise or sundown), the switch on/off time or a pulsed switching time (which triggers an impulse of 2 seconds). The astro switch on/off time can be changed by +/- 2 hours.
With control input for central control ON or OFF with priority.
Supply voltage and control voltage for central control 8 to 230V UC.
The timer is set using the MODE and SET keys and a keylock function is provided.
Set language: Every time the power supply is applied, press SET within 10 seconds to set the ES = Spanish. The normal display then appears: weekday, time, day and month.
Rapid scroll: In the following settings, the numerals scroll rapidly when you press and hold down Enter. Release then press and hold down to change the scroll direction.
Set clock: Press MODE then at PRG (program) press SET to search for the CLK function. Press MODE to set. In H, press SET to select the hour and press MODE to confirm. In M proceed in the same way to set the minute.
Set date: Press MODE then at PRG press SET to search for the DAT function.
Press MODE to select. At Y, press SET to select the year and press MODE to confirm.
Proceed in the same way at M to set the month and at D to set the day. The last setting in the sequence is MO (weekday) blinking. Press SET to set it and press MODE to confirm.
Set geographic position (if the astro function is required): Press MODE then press SET at PRG to search for the POS function. Select by pressing MODE. For LAT press SET to select the latitude and press MODE to confirm. Repeat this procedure for LON to select the longitude and press MODE to confirm. As the last setting in the sequence, GMT flashes. Here press SET to select the time zone and press MODE to confirm.
Manual switching: Press MODE and for PRG press SET to search for function INT. Then press MODE to select. For CH press SET to select Channel 1 or 2 and press MODE to confirm. Manual switching is cancelled automatically when a timer function is executed.
Summer/winter time changeover: Press MODE then at PRG press SET to search for the
SWT function and press MODE to select. Now press SET to switch between ON and OFF. If you select ON , changeover is automatic.
Central control ON or OFF with priority: Press MODE and then press SET for PRG to search for function CIA. Press MODE to select. Then press SET to switch from COF to CON and press MODE to confirm.
Switch random mode on/off: Press MODE then at PRG press SET to search for the RND function and press MODE to select. Press SET to set to ON (RND+) or OFF (RND) and press MODE to confirm. When random mode is switched on, all switch-on time points of all channels are shifted at random by up to 15 minutes. Switch-on times are switched earlier and switch-off times are switched later.
Enable keylock: Briefly press MODE and SET together and at LCK, press SET to lock. This is displayed by an arrow next to the lock symbol.
Disable keylock: Press MODE and SET together for 2 seconds and at UNL press SET to unlock.

Technical Data

Time Relays, Multifunction Time Relays and Timer

Contacts	MFZ12DDX ${ }^{\text {b }}$ MFZ12DX ${ }^{\text {b }}$ RVZ/AVZ/TGI/ EAW12DX ${ }^{\text {b) }}$	MFZ12NP	$\begin{array}{\|l} \text { MFZ12-230V } \\ \text { A2Z12-UC } \end{array}$	MFZ61DX ${ }^{\text {b) }}$	S2U12DDX ${ }^{\text {b }}$
Contact material/contact gap	$\mathrm{AgSnO}_{2} / 0.5 \mathrm{~mm}$				
Spacing of control connections/contact Spacing control connections $\mathrm{Cl}-\mathrm{C} 2$ or A1-A2/contact	$\begin{aligned} & 6 \mathrm{~mm} \\ & - \end{aligned}$	3 mm 6 mm	3 mm ; A2Z12: 6 mm	$6 \mathrm{~mm}$	$\begin{aligned} & 6 \mathrm{~mm} \\ & - \\ & \hline \end{aligned}$
Test voltage control connections/contact Test voltage $\mathrm{Cl}-\mathrm{C} 2$ or $\mathrm{Al}-\mathrm{A} 2$ /contact	$4000 \mathrm{~V}$	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	2000V: A2212: 4000V	$\begin{aligned} & 2000 \mathrm{~V} \\ & 4000 \mathrm{~V} \end{aligned}$	$4000 \mathrm{~V}$
Rated switching capacity	$10 \mathrm{~A} / 250 \mathrm{~V}$ AC	16 A/250V AC	10 A/250V AC	10 A/250V AC	16A/250V AC
Incandescent lamp and halogen lamp load ${ }^{1)} 230 \mathrm{~V}$	$2000 W^{3)}$	$2300 W^{3)}$	$1000 W^{3)}$	$2000 W^{3)}$	$2000 W^{3)}$
Fluorescent Iamp load with KVG* in lead-lag circuit or non compensated	$1000 \mathrm{VA}^{3)}$	$1000 \mathrm{VA}^{3)}$	$500 \mathrm{VA}{ }^{3)}$	$1000 \mathrm{VA}^{3)}$	$1000 \mathrm{VA}^{3)}$
Fluorescent lamp load with KVG* shunt-compensated or with EVG*	$500 \mathrm{VA}{ }^{3)}$	$500 \mathrm{VA}{ }^{3}$	$250 \mathrm{VA}^{3}$	$500 \mathrm{VA}{ }^{3}$	$500 \mathrm{VA}{ }^{3}$
Compact fluorescent lamps with EVG* and energy saving lamps ESL	$\begin{aligned} & 15 \times 7 \mathrm{~W} \\ & 10 \times 20 \mathrm{~W} \end{aligned}$	$\begin{aligned} & 15 \times 7 \mathrm{~W} \\ & 10 \times 20 \mathrm{~W} \end{aligned}$	$1 \mathrm{on} \leq 35 \mathrm{~A} / 10 \mathrm{~ms}{ }^{2)}$	$\begin{aligned} & 15 \times 7 \mathrm{~W} \\ & 10 \times 20 \mathrm{~W}^{4} \end{aligned}$	$\begin{aligned} & 15 \times 7 \mathrm{~W}^{34} \\ & 10 \times 20 \mathrm{~W}^{3)} \end{aligned}$
Max. switching current DC1: $12 \mathrm{~V} / 24 \mathrm{~V}$ DC	8A	-	8 A	8 A	8 A
Life at rated load, $\cos \varphi=1$ for incandescent lamps 1000 W at $100 / \mathrm{h}$	$>10^{5}$	$>10^{5}$	$>10^{5}$	$>10^{5}$	$>10^{5}$
Life at rated load, $\cos \varphi=0.6$ at 100/h	$>4 \times 10^{4}$				
Maximum conductor cross-section (3-fold terminal)	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \left(4 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{array}{\|l\|l\|} \hline 6 \mathrm{~mm}^{2} \\ \left(4 \mathrm{~mm}^{2}\right) \end{array}$	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \left(4 \mathrm{~mm}^{2}\right) \end{aligned}$	$4 \mathrm{~mm}^{2}$	$\begin{aligned} & 6 \mathrm{~mm}^{2} \\ & \left(4 \mathrm{~mm}^{2}\right) \end{aligned}$
Two conductors of same cross-section (3-fold terminal)	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$	$1.5 \mathrm{~mm}^{2}$	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \left(1.5 \mathrm{~mm}^{2}\right) \end{aligned}$
Screw head	slotted/crosshead, pozidriv	slotted/crosshead pozidriv	slotted/crosshead pozidriv	slotted/crosshead	slotted/crosshead, pozidriv
Type of enclosure/terminals	IP50/IP20	IP50/IP20	IP50/IP20	IP30/IP20	IP50/IP20
Electronics					
Time on	100\%	100\%	100\%	100\%	100\%
Max./min. temperature at mounting location	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} /-20^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C}$	$+50^{\circ} \mathrm{C} / 20^{\circ} \mathrm{C}$
Temperature dependence	< 0.2% per ${ }^{\circ} \mathrm{C}$	$<0.2 \%$ je ${ }^{\circ} \mathrm{C}$			
Repeat accuracy at $25^{\circ} \mathrm{C}$	$\pm 0.1 \%$				
Control voltage dependence from 0.9 to $1.1 x$ rated voltage	none	none	none	none	none
Stored energy time in the event of power failure (then total reset)	≥ 0.2 seconds	≥ 0.2 seconds	≥ 0.2 seconds	≥ 0.2 seconds	20 days
Standby loss (active power) 230V	MFZ12DDX: 0.5 W ; MFZ12DX: 0.4-0.6W RVZ/AVZ/TGI/ EAW12: 0.4 W	0.5W	0.4W	0.4W	0.4W
Standby loss (active power) $12 \mathrm{~V} / 24 \mathrm{~V}$	$0.02 \mathrm{~W} / 0.04 \mathrm{~W}$; MFZ12DDX: $0.05 \mathrm{~W} / 0.1 \mathrm{~W}$	-	-	0.02W/0.04W	0.03W/0.06W
Control current 230 V-control input local $\pm 20 \%$	-	2 mA	2mA; A2Z12: -	-	-
Control current universal control voltage $8 / 12 / 24 / 230 \mathrm{~V}(<10 \mathrm{~s}) \pm 20 \%$	0.05/0.1/0.2/1mA	2/4/9/5 (100)mA	$\begin{aligned} & \text { A2212: } \\ & 0.05 / 0.1 / 0.2 / 1 \mathrm{~mA} \end{aligned}$	0.05/0.1/0.2/1mA	0.04/0.05/0.1/1.2mA
Max. parallel capacitance (approx. length) of the control leads at 230V AC	$0.2 \mu \mathrm{~F}(600 \mathrm{~m})$	$0.01 \mu \mathrm{~F}$ (30 m) $\mathrm{Cl}-\mathrm{C} 2: 0.03 \mu \mathrm{~F}$ (100m)	$0.01 \mu \mathrm{~F}(30 \mathrm{~m})$; A2Z12: $0.2 \mu \mathrm{~F}$ (600 m)	$0.2 \mu \mathrm{~F}(600 \mathrm{~m})$	$0.2 \mu \mathrm{~F}(600 \mathrm{~m})$

* EVG = electronic ballast units; KVG = conventional ballast units
${ }^{\text {b) }}$ Bistable relay as relay contact. The switched consumer may not be connected to the mains before the short automatic synchronisation after installation has terminated. " ${ }^{1}$ For lamps with a load of 150 W max. ${ }^{2} \mathrm{~A} 40$-fold inrush current must be calculated for electronic ballast devices. For steady loads of 1200 W or 600 W use the current-limiting relay SBR12 or SBR61. Product group G, page G4. ${ }^{3)}$ The maximum load can be used from a delay time or clock cycle of 5 minutes. The maximum load is reduced for shorter times as follows: up to 2 seconds 500 W , up to 2 minutes 1000 W , up to 5 minutes 2000 W .
${ }^{4}$) When using DX types close attention must be paid that zero passage switching is activated!

